
May 2005 NAS Technical Report NAS-05-008

43rd AIAA Aerospace Sciences Meeting, Jan. 10–13, 2005, Reno, NV

Adjoint Formulation for an Embedded-Boundary

Cartesian Method

Marian Nemec∗ and Michael J. Aftosmis†

NASA Ames Research Center, Moffett Field, CA 94035

Scott M. Murman‡

ELORET Corp., Moffett Field, CA 94035

Thomas H. Pulliam§

NASA Ames Research Center, Moffett Field, CA 94035

A discrete-adjoint formulation is presented for the three-dimensional Euler equations
discretized on a Cartesian mesh with embedded boundaries. The solution algorithm for the
adjoint and flow-sensitivity equations leverages the Runge–Kutta time-marching scheme
in conjunction with the parallel multigrid method of the flow solver. The matrix-vector
products associated with the linearization of the flow equations are computed on-the-fly,
thereby minimizing the memory requirements of the algorithm at a computational cost
roughly equivalent to a flow solution. Three-dimensional test cases, including a wing-body
geometry at transonic flow conditions and an entry vehicle at supersonic flow conditions,
are presented. These cases verify the accuracy of the linearization and demonstrate the
efficiency and robustness of the adjoint algorithm for complex geometry problems.

I. Introduction

Adjoint solutions of the governing flow equations are becoming increasingly important for the devel-
opment of efficient analysis and optimization algorithms. A well-known use of the adjoint method is

gradient-based shape optimization.1–5 Given an objective function that defines some measure of performance,
such as the lift and drag functionals, its gradient is computed at a cost that is essentially independent of the
number of design variables (e.g., geometric parameters that control the shape). Recent adjoint applications
focus on the analysis problem, where the adjoint solution is used to drive mesh adaptation,6–9 as well as
to provide estimates of functional error bounds and corrections.10 The attractive feature of this approach
is that the mesh-adaptation procedure targets a specific functional, thereby localizing the mesh refinement
and reducing computational cost.

The adjoint method, as well as the closely related flow-sensitivity (or direct) method, have been exten-
sively analyzed and validated for the Euler and Navier–Stokes equations discretized on structured11–14 and

∗NRC Research Associate; currently Research Scientist, ELORET Corp., Applications Branch, MS T27B; mne-
mec@mail.arc.nasa.gov. Member AIAA.

†Research Scientist, maftosmis@mail.arc.nasa.gov. Senior Member AIAA.
‡Senior Research Scientist, smurman@mail.arc.nasa.gov. Member AIAA.
§Senior Research Scientist, tpulliam@mail.arc.nasa.gov. Associate Fellow AIAA.
Copyright c© 2005 by the American Institute of Aeronautics and Astronautics, Inc. The U.S. Government has a royalty-free

license to exercise all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the
copyright owner.

1 of 15

American Institute of Aeronautics and Astronautics Paper 2005–0877

May 2005 NAS Technical Report NAS-05-008

unstructured meshes.15–17 When the adjoint equation is derived from the discrete form of the flow equa-
tions, which is the approach used in this work, the accuracy of the adjoint solution primarily depends on the
accuracy of the linearization of the flow equations. The most common approach is to derive the lineariza-
tion by hand.15,18–20 An emerging approach is automatic differentiation,21–25 which aims to generate the
linearization with minimal human effort. The solution of the adjoint equation is usually accomplished using
the same scheme that solves the flow equations.

Cartesian methods provide a promising alternative to discretizations based on structured and unstruc-
tured meshes. The key feature of Cartesian methods is that the volume mesh generation is fast and robust
for arbitrarily-complex geometry. In the embedded-boundary approach, the surface discretization is inter-
sected against a Cartesian volume mesh resulting in a layer of arbitrary polyhedra, or cut cells, adjacent to
the surface.26,27 When combined with an efficient flow solver,28 this approach is particularly well suited for
the automated analysis of complex geometry problems, and consequently a promising approach for optimal
shape design. Nemec et al.29 presented a CAD-based optimization framework for an embedded-boundary
Cartesian method where the objective function gradients are computed using finite differences. In addition,
Aftosmis and Berger30 presented an efficient strategy for h-refinement of nested Cartesian meshes. Conse-
quently, an adjoint solver would enhance the efficiency of the existing optimization framework, and provide a
new adaptation criterion to complement the present feature-detection and local truncation error approaches.

In previous work on Cartesian adjoint solvers, Melvin et al.31 developed an adjoint formulation for the
TRANAIR code,32 which is based on the full-potential equation with viscous corrections. More recently,
Dadone and Grossman33,34 presented an adjoint formulation for the two-dimensional Euler equations using
a ghost-cell method to enforce the wall boundary conditions.

In this paper, we develop an adjoint formulation for the three-dimensional Euler equations discretized
on an embedded-boundary Cartesian mesh. We present a numerical implementation of the discrete adjoint
approach, where the adjoint solver efficiently reuses the time-marching, multigrid, and domain decomposition
schemes of the flow solver. We discuss a face-based algorithm for the construction of the flow Jacobian
matrix that minimizes memory usage. The approach is generally applicable to finite-volume schemes for
unstructured meshes and is tailored to the specialized data structures of the flow solver. We verify the
accuracy of the linearization and demonstrate the overall efficiency and robustness of the approach on
several two- and three-dimensional test cases.

II. Problem Formulation

The aerodynamic optimization problem we consider in this work consists of determining values of design
variables X, such that the objective function J is minimized

min
X

J (X,Q) (1)

where the vector Q denotes the continuous, conservative flow variables. The flow variables are forced to
satisfy the governing flow equations within a feasible region of the design space Ω

F(X, Q) = 0 ∀ X ∈ Ω (2)

which implicitly defines Q = f(X).
Our goal is to solve the optimization problem defined by Eqs. 1–2 using a gradient-based method. The

adjoint equation required for the computation of the gradient, dJ /dX, can be derived using either the
continuous or discrete formulation. In the continuous formulation, the adjoint equation is derived directly
from Eqs. 1–2, and the resulting continuous equation is then discretized. Alternatively, Eqs. 1–2 can be
first discretized, and the desired adjoint equation is derived from the discrete form of the governing equa-
tions. Both formulations work well in practice. We favour the discrete formulation because it provides a
systematic approach to the adjoint code development by closely following the flow solver. Verification of
the resulting code is straightforward, and code maintenance issues such as the incorporation of new features

2 of 15

American Institute of Aeronautics and Astronautics Paper 2005–0877

May 2005 NAS Technical Report NAS-05-008

of the flow solver are simplified. In order to clearly present the discrete adjoint method, we first provide a
brief description of the flow solver. Thereafter, we focus on the development of the gradient computation
algorithm.

III. Governing Flow Equations and Numerical Method

The governing flow equations are the three-dimensional Euler equations of a perfect gas. For a finite
region of space with volume V and surface area S, the integral form of the Euler equations is given by

d
dt

∫

V

Q dV +
∮

S

F · n dS = 0 (3)

where Q = [ρ, ρu, ρv, ρw, ρE]T, F is the inviscid flux tensor and n is the outward facing unit normal vector.

A. Spatial Discretization

The Euler equations are solved with a finite-volume method on a regular Cartesian mesh with embedded
boundaries. The mesh consists of hexahedral cells, except for a layer of body-intersecting cells, or cut-
cells, that are arbitrary polyhedra adjacent to the boundaries.27 Spatial discretization uses a cell-centered
approach, where the control volumes V correspond to the mesh cells and the cell-averaged value of Q, denoted
by Q̄, is located at the centroid of each cell. The control volumes are fixed in time, resulting in the following
semi-discrete form of Eq. 3:

~V
d ~Q

dt
+ ~R

(
~Q
)

= 0 (4)

where ~Q = [Q̄1, Q̄2, . . . , Q̄N]T is the discrete solution vector for all N cells, ~V is a diagonal matrix containing
the corresponding cell volumes, and ~R is the residual vector. The residual in each cell i is expressed as

Ri =
∑

j∈Vi

F̂j · njSj (5)

where j denotes the jth face of volume Vi with area S and F̂ represents the numerical flux function. The
flux function is evaluated at the face centroids using the flux-vector splitting approach of van Leer.35

U

U i

U L R

U k
dRdL

Figure 1. Labels for the reconstruction of
cell-centroid values to a common face

The residual evaluation for a second-order accurate dis-
cretization proceeds by first reconstructing the solution to the
cell face. This is illustrated in Fig. 1, for two neighbouring
Cartesian cells i, k sharing a common face. Primitive variables,
U = [ρ, u, v, w, p]T, are used for the reconstruction and the left
and right states are given by

UL = Ūi + dLφi∇Ui (6)
UR = Ūk − dRφk∇Uk (7)

where dL and dR are the distances from the cell centroids to the
face centroid, φ is the slope limiter used to enforce monotonic
solutions, and ∇U is the solution gradient determined via a
linear least-squares procedure. Next, the evaluation of the van Leer flux function provides a unique value of
flux at the face

F̂(UL, UR) = f+(UL) + f−(UR) (8)

where the resulting flux is computed in conservative form. At the implementation level, the assembly of the
residual vector is accomplished by a loop over the faces of the mesh using a specialized, faced-based data

3 of 15

American Institute of Aeronautics and Astronautics Paper 2005–0877

May 2005 NAS Technical Report NAS-05-008

structure.28 The flux contributions are scattered from the face and accumulated in the cells

Ri = Ri + F̂S (9)

Rk = Rk − F̂S (10)

where the sign reflects the change in the direction of the outward-pointing normal, see Fig. 1. The boundary
conditions are enforced weakly by appropriate modifications of the reconstructed state and the resulting flux.

B. Steady-State Solution Algorithm

Steady-state solutions are obtained using a five-stage Runge–Kutta scheme accelerated by local time stepping
and multigrid. The multigrid residual restriction operator is the sum of the residuals of the fine mesh cells
enclosed by the coarse cell, while the prolongation operator is direct injection. Convergence to steady state
is further accelerated by a highly-scalable domain decomposition scheme. For further details on the flow
solution algorithm, see Aftosmis et al.28,36,37 and Berger et al.37

IV. Adjoints and Sensitivities

A. Formulation

The gradient, G, of the discrete objective function J
[
X, ~Q(X)

]
is given by

G =
dJ
dX

=
∂J
∂X

+
∂J
∂ ~Q

d ~Q

dX
(11)

where ~Q is the steady-state solution of Eq. 4 for a given set of design variables

~R(X, ~Q) = 0 (12)

Note that this is the discrete equivalent of Eq. 2. We reduce the vector of design variables, X, to a scalar
in order to clearly distinguish between partial and total derivatives. For problems with multiple design
variables, G and ∂J /∂X are [1 × ND] row vectors, ∂J /∂ ~Q is a [1 × NF] row vector, and d ~Q/dX is a
[NF ×ND] matrix, where NF and ND represent the number of flow and design variables, respectively.

In Eq. 11, the evaluation of the term d ~Q/dX, referred to as the flow sensitivities, is obtained by differ-
entiating Eq. 12 with respect to the design variables

∂ ~R

∂ ~Q

d ~Q

dX
= − ∂ ~R

∂X
(13)

We assume that the implicit function ~Q(X) is sufficiently smooth5,38 and note that d~R/dX = 0. The direct,
or flow-sensitivity, method results from solving Eq. 13 for the flow sensitivities d ~Q/dX and using these values
in Eq. 11 to obtain the gradient.

In order to formulate the discrete-adjoint method, substitute Eq. 13 into Eq. 11 to obtain

dJ
dX

=
∂J
∂X

− ∂J
∂ ~Q

(
∂ ~R

∂ ~Q

)−1
∂ ~R

∂X
(14)

From the triple-product term in Eq. 14, define the following intermediate problem involving the first two
terms

∂ ~R

∂ ~Q

T

~ψ =
∂J
∂ ~Q

T

(15)

4 of 15

American Institute of Aeronautics and Astronautics Paper 2005–0877

May 2005 NAS Technical Report NAS-05-008

where ~ψ is a [NF × 1] column vector. This linear system of equations is referred to as the adjoint equation,
and the vector ~ψ represents the adjoint variables. Substituting ~ψ into Eq. 14, the expression for the gradient
becomes

dJ
dX

=
∂J
∂X

− ~ψ T ∂ ~R

∂X
(16)

In general, the problem of solving the adjoint equation is as difficult as solving the flow-sensitivity equation.
Equation 13 is a linear system with multiple right-hand sides dependent on the number of design variables,
while Eq. 15 is a linear system with multiple right-hand sides dependent on the number of objectives. In
a typical optimization problem where the number of design variables exceeds the number of objectives, the
adjoint method is therefore more efficient when iterative solvers are used to solve the linear systems.

B. Numerical Implementation

The solution of the adjoint and flow-sensitivity equations proceeds by introducing unsteady terms in Eqs. 13
and 15 to obtain the following semi-discrete forms

~V
d ~Q′

dt
+ ~Rs = 0 (17)

~V
d~ψ

dt
+ ~Ra = 0 (18)

where ~Q′ = d ~Q/dX and the flow-sensitivity and adjoint residual vectors are given by

~Rs =
∂ ~R

∂ ~Q
~Q′ +

∂ ~R

∂X
(19)

~Ra =
∂ ~R

∂ ~Q

T

~ψ − ∂J
∂ ~Q

T

(20)

We expect Eqs. 17 and 18 to have similar stability properties to the flow equations, Eq. 4, since the eigenvalues
of the flow Jacobian matrix are not changed by the transpose operator.

A critical step in the solution procedure is the evaluation of the matrix-vector product terms

∂ ~R

∂ ~Q
~Q′ and

∂ ~R

∂ ~Q

T

~ψ

For the flow-sensitivity equation, the linearization of the residual equations can be approximated with finite-
differences, for example

∂ ~R

∂ ~Q
~Q′ =

~R
(

~Q + ε ~Q′
)
− ~R(~Q)

ε
(21)

where a good choice of the stepsize is ε =
√

(εm)/||v||.14,39 We refer to the formulation resulting from Eq. 21
as matrix-free flow sensitivities. Advantages of this approach are low memory requirements and ease of
implementation, since the differentiation of cumbersome residual functions, such as limiters and numerical
fluxes, is “automatically” provided. Unfortunately, this method does not extend to approximating the
product of the adjoint variables with the transpose of the flow-Jacobian.

Strategies for the computation of the matrix-vector products based on an explicit linearization of the
residual equations are usually driven by the choice of the flow solution method. For strongly implicit solvers,
the non-zero entries of the sparse flow-Jacobian matrix can be precomputed and stored, thereby reducing
CPU time but increasing memory usage.40 Alternatively, some or all entries of the flow-Jacobian can be

5 of 15

American Institute of Aeronautics and Astronautics Paper 2005–0877

May 2005 NAS Technical Report NAS-05-008

recomputed when forming the matrix-vector product, thereby reducing memory usage but increasing CPU
time, for example see Giles et al.,15 Nielsen et al.,16 and Mavriplis.17

To adopt the explicit flow solution method outlined in Sec. III for the solution of the adjoint and flow-
sensitivity equations, we implement a face-based algorithm to efficiently recompute the flow-Jacobian entries
at each evaluation of the residual vector. The approach is similar to the work of Barth18 and Giles et al.15

The formation of the flow-sensitivity matrix-vector product is simply a linearization of the flow-solution
procedure. The first step is the multiplication by the Jacobian of the transformation from conservative to
primitive variables

~U ′ =
∂~U

∂ ~Q
~Q′ (22)

where ∂~U/∂ ~Q is a block diagonal matrix.
Next, we seek the matrix-vector product associated with the linearization of the reconstructed left and

right states, Eqs. 6 and 7, which we symbolically denote as (∂UL/R/∂U)~U ′. Let the operator L represent
the reconstruction operator

UL/R = L(Ūm, . . . , Ūn) (23)

where the reconstructed state depends linearly on a set of neighbouring cells (Ūm, . . . , Ūn) and contains the
least-squares weights that are dependent only on mesh geometry. Note that the limiter, φ in Eq. 6, is treated
as a constant during the linearization process. We investigate the validity of this assumption in Section V.
Barth18 demonstrates that the desired matrix-vector product can be expressed as

∂UL/R

∂U
~U ′ = L(~U ′) = U ′

L/R (24)

Hence, the matrix-vector product associated with the linearization of the reconstruction operator is the
reconstruction operator itself evaluated using the flow-sensitivity vector instead of the flow variables. For
first-order spatial discretization, the linearization of the reconstruction operator is simply the identity matrix.

The final step is the matrix-vector product associated with the linearization of the van Leer flux function,
Eq. 8. This flux function has been linearized previously, see for example Burgreen.41 We derived and coded
the linearization by hand and verified the result using the symbolic differentiation tool of Maple 6. We
found that the Maple code executed roughly a factor of two slower than the hand-generated code. Referring
to Fig. 1, the contribution to the flow-sensitivity residual vector from a common face to its left and right
neighboring cells can be written as

Rs
i = Rs

i +
(

∂f+

∂UL
U ′

L +
∂f−

∂UR
U ′

R

)
S (25)

Rs
k = Rs

k −
(

∂f+

∂UL
U ′

L +
∂f−

∂UR
U ′

R

)
S (26)

For the adjoint matrix-vector product, the transpose operator reverses the order of matrix multiplication
outlined for the flow-sensitivity procedure. Hence, the adjoint of the flux-function linearization is evaluated
first, followed by adjoint of the reconstruction step, and lastly the adjoint of the transformation Jacobian
form conservative to primitive variables. By examining the structure of the transposed flow Jacobian matrix
for a first-order accurate spatial discretization, the contribution to the adjoint residual vector from a common
face to its left and right neighboring cells, see Fig. 1, can be written as

Ra
i = Ra

i +
∂Ui

∂Qi

T ∂f+

∂Ui

T

S (ψi − ψk) (27)

Ra
k = Ra

k +
∂Uk

∂Qk

T ∂f−

∂Uk

T

S (ψi − ψk) (28)

6 of 15

American Institute of Aeronautics and Astronautics Paper 2005–0877

May 2005 NAS Technical Report NAS-05-008

where the gather operation ψi − ψk reflects the change of sign in Eqs. 9 and 10. Cusdin24 derives a similar
result using automatic differentiation. For second-order spatial discretizations, the adjoint of the reconstruc-
tion procedure is accomplished using an additional pass through the faces of the mesh. The Jacobian of
the reconstruction procedure involves only the geometry-dependent least-squares weights, which are already
computed and stored by the flow solver.

Since the algorithm uses only elemental face operations for both the flow-sensitivity and adjoint matrix-
vector products, the face-based data structures and the domain decomposition scheme of the flow solver
are reused directly. The implementation results in only a slight increase in the memory usage over the flow
solver, namely we require two additional arrays that store the converged flow solution and its gradient.

The partial derivative term ∂J /∂ ~Q in Eqs. 11 and 15 is derived by hand. The differentiation assumes
first-order spatial discretization, that is, we do not reconstruct the value of pressure to the surface. The
remaining partial derivative terms in Eqs. 11 and 16, namely the objective function sensitivity ∂J /∂X and
the residual sensitivity ∂ ~R/∂X, are approximated with finite differences. This approach works well for the
verification exercises presented in the next section, however, it is not sufficient for general shape optimization
problems since the topology of the Cartesian mesh may change as the shape is perturbed. This issue is left
as a subject of future work.

Convergence to steady-state is accomplished using the same five-stage Runge–Kutta time marching and
multigrid schemes of the flow solver. Giles42 derived conditions for Runge–Kutta time marching schemes
and multigrid that ensure the same convergence of the objective function gradient for the adjoint and
flow-sensitivity methods. This duality-preserving algorithm is implemented almost automatically, since the
existing residual prolongation operator is a transpose of the restriction operator. Overall, the CPU time per
iteration of the adjoint and flow-sensitivity solvers is roughly equivalent to the flow solver. This is because
the additional cost of re-evaluating the matrix vector product at each iteration is offset by preprocessing the
local time step and limiter values, as well as not requiring positivity checks for solution updates.

V. Results and Discussion

Several two- and three-dimensional test cases are studied to verify the accuracy and characterize the
performance of the adjoint and flow-sensitivity solvers. Finite-difference gradients provide a benchmark that
is used to establish the accuracy of the linearization. The relative finite-difference stepsize (ε) is varied from
1% to 0.01% to ensure accurate gradient estimates.

A. NACA 0012 Airfoil

The first test case involves the NACA 0012 airfoil at transonic flow conditions. Our main goal is to verify
the linearization of the spatial discretization and investigate the effect of the constant limiter assumption.
The freestream Mach number is 0.7 and the angle of incidence is 3 deg. The two-dimensional mesh contains
roughly 11, 000 cells. For this test case, the multigrid and domain decomposition algorithms are not used,
and the flow-solution gradients are computed at every stage of the five-stage Runge–Kutta (RK5) time-
marching scheme. The CFL number is 1.3. The Mach number distribution and the computational mesh are
shown in Fig. 2(a).

The objective function is −CL, which represents a lift maximization problem. We compute the gradient
of the objective function with respect to two design variables. The first design variable is a local shape
perturbation on the upper surface of the airfoil at x = 33.5%c. This location is just upstream of the shock
in Fig. 2(a). We modify the airfoil shape in a single cell only, which avoids changes in mesh topology. The
second design variable is the angle of incidence. For the computation of the gradient with respect to the first
design variable, the limiter function (φ in Eq. 6) is set to one, i.e. the limiter is not used.

Figures 2(b) and 2(c) show the qualitative behaviour of the flow-sensitivity and adjoint variables cor-
responding to the y-momentum equation, respectively. The flow-sensitivities attain large values and are
discontinuous at the shock, and have much smaller values near the leading and trailing edges of the airfoil.

7 of 15

American Institute of Aeronautics and Astronautics Paper 2005–0877

May 2005 NAS Technical Report NAS-05-008

These results are consistent with the location of the design variable near the base of the shock. The adjoint
variables represent the sensitivity of the functional, in this case −CL, to a unit perturbation of the residual
equations. The main feature is a singularity at the trailing edge, emphasizing the high sensitivity of lift to
perturbations in the y-momentum equation in this area. Furthermore, the adjoint variables are continuous
across the shock and increase again in the supersonic region near the leading edge. A weaker structure
propagates upstream from the leading-edge stagnation point.

(a) Mach number (red > 1.2, blue < 0.4) (b) Flow-sensitivity contours for ∂(ρv)/∂y (red >
1.8, blue < −1.8)

(c) Adjoint contours of the y-momentum equation
for the lift functional (red > 100, blue < −100)

Figure 2. NACA 0012 test case (M∞ = 0.7, α = 3 deg.)

Figure 3(a) shows the convergence history of the flow, flow-sensitivity, and adjoint equations. The symbol
MF denotes the matrix-free approach based on Eq. 21. The asymptotic convergence rate is the same for all
equations. The matrix-free approach stalls due to the choice of finite-difference stepsize and occurs near the
single-precision limit. Figure 3(b) shows the convergence of the objective function gradient. The agreement
between the flow-sensitivity, adjoint, and finite-difference methods is excellent at convergence. Furthermore,
the adjoint and flow-sensitivity methods generate identical values of the gradient at each iteration. For this
case, this equivalence between the methods is expected since the flow-solution gradients are updated at each
stage of the RK5 scheme.

In Fig. 4, we verify the gradient accuracy with respect to the angle of incidence design variable. This
case is more sensitive to the selection of the finite-difference stepsize (ε), which is attributed to non-smooth
changes in the shock position. We show two reference gradient values. For this case, the limiter function is
used in order to investigate its effect on the accuracy of the gradient. Recall that the limiter is treated as
a constant during the linearization except in the matrix-free approach. The differences in gradient values
between the matrix-free and explicit linearization approaches are small and are bracketed within the finite-

8 of 15

American Institute of Aeronautics and Astronautics Paper 2005–0877

May 2005 NAS Technical Report NAS-05-008

Iterations

lo
g(

L 1
D

en
si

ty
R

es
id

ua
l)

2000 4000 6000 8000
-8

-6

-4

-2

0

Flow Solution
Flow Sensitivity (MF)
Flow Sensitivity
Adjoint

(a) Residual

Iterations

G
ra

di
en

t

0 1000 2000 3000 4000
-3

-2.5

-2

-1.5

-1

-0.5

0
Flow Sensitivity (MF)
Flow Sensitivity
Adjoint
Finite Difference

(b) Gradient d(−CL)/dy

Figure 3. Convergence histories for the NACA 0012 airfoil

difference values. This indicates that the error in neglecting the linearization of the limiter is small.

B. M100 Configuration

Iterations

G
ra

di
en

t

0 1000 2000 3000 4000

-0.18

-0.17

-0.16
Flow Sensitivity (MF)
Flow Sensitivity
Adjoint
Finite Difference (ε = 0.01)
Finite Difference (ε = 0.001)

Figure 4. Effect of limiters on gradient accuracy

The second test case involves the M100 wing-body con-
figuration43 at transonic flow conditions. This test case
provides a three-dimensional verification exercise for the
accuracy of the linearization. We also examine the conver-
gence of the adjoint and flow-sensitivity solvers when us-
ing the full solution algorithm, including partial updates
of the RK5 scheme, multigrid, and parallel computing.

The freestream Mach number is 0.8027 and the angle
of incidence is 2.873 deg. A half-body mesh is used, which
contains roughly 1, 926, 000 cells. Convergence to steady-
state is achieved using 64 processors, a 4-level W-cycle
multigrid with one pre- and one post-smoothing pass, and
a CFL number of 1.3. Partial updates of the flow gradi-
ents are also used, i.e. the flow gradients are updated only
on the first stage of the RK5 scheme. The Mach number
distribution is shown in Fig. 5, where a strong shock is
visible on the upper surface of the wing.

The objective function is −CL and the design variable
is the angle of incidence. The first verification exercise is
performed using first-order accurate spatial discretization. Figure 6(a) shows the convergence of the flow,
flow-sensitivity, and adjoint equations. Again, the asymptotic convergence rate is the same for all equations.
The convergence of the objective function gradient is shown in Fig. 6(b), where the agreement with the
finite-difference gradient is excellent. Note that the adjoint and flow-sensitivity solvers compute the same
gradient values throughout the solution process. Also shown in Fig. 6(b) is the convergence of the objective

9 of 15

American Institute of Aeronautics and Astronautics Paper 2005–0877

May 2005 NAS Technical Report NAS-05-008

Figure 5. Mach contours for the M100 configuration (red > 1.4, blue < 0.4, M∞ = 0.8027, α = 2.873 deg.)

function. The objective and its gradient are converged within 20 multigrid cycles.

Multigrid Cycles

lo
g(

L 1
D

en
si

ty
R

es
id

ua
l)

50 100 150 200-10

-8

-6

-4

-2

0
Flow Solution
Flow Sensitivity
Adjoint

(a) Residual

Multigrid Cycles

G
ra

di
en

t

-C
L

0 10 20 30 40 50

-0.1

-0.09

-0.08

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

Flow Sensitivity
Adjoint
Finite Difference
Objective

(b) Gradient d(−CL)/dα and objective function

Figure 6. Convergence histories for first-order accurate spatial discretization (M100 wing-body configuration,
M∞ = 0.8027, α = 2.873 deg.)

We perform the same study using second-order spatial discretization and the results are shown in Fig. 7.
Although the flow solver converges almost eight orders of magnitude, convergence is not smooth, as shown in
Fig. 7(a). Nevertheless, the asymptotic convergence of the adjoint and flow-sensitivity equations is equivalent.
Convergence of the objective and its gradient is shown in Fig. 7(b). Overall, the agreement between the
finite-difference, adjoint, and flow sensitivity gradients is good. The small difference can be attributed to
the constant limiter assumption during the linearization process, and we also observed that the value of
the finite-difference gradient varied with the stepsize. We show the gradient value using ε = 0.005. Lastly,
close examination of Fig. 7(b) reveals slight differences in the gradient values between the adjoint and flow-
sensitivity solvers during the convergence process. These differences are due to omitting an update of the

10 of 15

American Institute of Aeronautics and Astronautics Paper 2005–0877

May 2005 NAS Technical Report NAS-05-008

flow-solution gradient just prior to residual restriction, which is done to save overall CPU time, and the
differences vanish at convergence.

Multigrid Cycles

lo
g(

L 1
D

en
si

ty
R

es
id

ua
l)

100 200 300 400

-12

-10

-8

-6

-4

-2

0
Flow Solution
Flow Sensitivity
Adjoint

(a) Residual

Multigrid Cycles

G
ra

di
en

t

-C
L

0 10 20 30 40 50

-0.14

-0.12

-0.1

-0.08

-0.7

-0.6

-0.5

-0.4
Flow Sensitivity
Adjoint
Finite Difference
Objective

(b) Gradient d(−CL)/dα and objective function

Figure 7. Convergence histories for second-order accurate spatial discretization (M100 wing-body configura-
tion, M∞ = 0.8027, α = 2.873 deg.)

C. Mars Smart Lander

The final test case involves the Mars Smart Lander (MSL) entry vehicle44 at supersonic flow conditions.
The purpose of this verification exercise is to demonstrate the robustness of the adjoint and flow-sensitivity
solvers for cases with complex flowfields. The MSL vehicle represents a real-life design study well suited for
the application of new optimization algorithms. An interesting feature of the vehicle geometry is a small
tab, visible near the top of the configuration in Fig. 8(a). This tab is used to alter the trim orientation (by
changing the lift-to-drag ratio) to provide trajectory control.

The freestream Mach number is 2.5 and the angle of incidence is 0 deg. The mesh contains roughly
1, 770, 000 cells and was generated using the solution-adaptive h-refinement strategy presented in Ref. 30.
Undivided differences of density were used to drive the adaptation procedure. A 3-level W-cycle multigrid
with one pre- and one post-smoothing pass with a CFL number of 1.3 and 64 processors are used. The
flow gradients are updated on the first stage of the RK5 scheme. The mesh and the flow solution (pressure
contours) are shown in Fig. 8(a). The main flow features include a strong bow shock and an “unsteady”
wake.

The objective function and design variable are again −CL and the angle of incidence, respectively. Fig-
ures 8(b) and 8(c) show the contours of flow-sensitivities and adjoint variables for the energy equation. The
sensitivity of the flow variables to angle of incidence perturbations is largest in the bow-shock region. The
adjoint variables are continuous across the bow-shock and attain the largest values on the lower surface of
the vehicle. Note the moderate adjoint values just upstream of the shock, highlighting the effect of the
bow-shock orientation on the lift functional.

Convergence of the flow, flow-sensitivity, and adjoint equations are shown in Fig. 9. The flow-solution
converged roughly four orders of magnitude and stalled. The stall in convergence is attributed to the
unsteadiness of the wake. Full-multigrid startup is used, where the solution on the coarse grids (roughly

11 of 15

American Institute of Aeronautics and Astronautics Paper 2005–0877

May 2005 NAS Technical Report NAS-05-008

(a) Pressure contours (red > 5.5, blue < 0.1) (b) Flow-sensitivity contours for ∂(ρE)/∂α (red >
1, blue < −1)

(c) Adjoint contours of the energy equation for the
lift functional (red > 0.04, blue < −0.02)

Figure 8. Mars Smart Lander test case (M∞ = 2.5, α = 0 deg.)

12 of 15

American Institute of Aeronautics and Astronautics Paper 2005–0877

May 2005 NAS Technical Report NAS-05-008

the first 100 multigrid cycles in Fig. 9) is very fast. Even with the limited convergence of the flow solution,
the adjoint and flow-sensitivity solvers converge well. The asymptotic convergence rate of the adjoint and
flow-sensitivity equations is the same. Objective function gradient accuracy is presented in Table 1. The
agreement in Table 1 is good, and again the small differences are due to the constant limiter assumption in
the linearization, and the dependence of the finite-difference gradient on the stepsize.

Multigrid Cycles

lo
g(

L 1
D

en
si

ty
R

es
id

ua
l)

100 200 300 400

-6

-4

-2

0

2 Flow Solution
Flow Sensitivity
Adjoint

Figure 9. Residual convergence history for the Mars Smart Lander (3-level multigrid with full-multigrid
start-up, M∞ = 2.5, α = 0 deg.)

Table 1. Gradient accuracy for the Mars Smart Lan-
der (d(−CL)/dα)

Finite Difference[a] Flow Sensitivity Adjoint
0.02796 0.02589 0.02589

a Stepsize 0.005

VI. Summary and Future Work

Discrete adjoint and flow-sensitivity algorithms have been presented for the three-dimensional Euler
equations discretized on an embedded-boundary Cartesian mesh. The algorithms reuse the time-marching
and parallel multigrid methods of the flow solver and recompute the required matrix-vector products at each
iteration. This approach results in memory usage and CPU cost roughly equivalent to the flow solver. We
verified the accuracy of the gradient computation by comparison with finite-difference approximations and
obtained excellent agreement for both the adjoint and flow-sensitivity methods. Robust performance of the
algorithms was demonstrated for all test cases.

Future work focuses on incorporating the adjoint solver into the CAD-based optimization framework of
Ref. 29. The challenging aspect of this work is to accurately linearize the objective function and residual
equations with respect to the design variables. However, the combination of an embedded-boundary Carte-
sian method for dealing with large shape changes with the efficiency of adjoint-based optimization techniques
appears to be a promising approach for practical design problems.

13 of 15

American Institute of Aeronautics and Astronautics Paper 2005–0877

May 2005 NAS Technical Report NAS-05-008

VII. Acknowledgments

The funding of the first author by the National Research Council Research Associateship Award is
gratefully acknowledged. Scott Murman was supported by NASA Ames Research Center (contract NAS2-
00062) during this work.

References

1Jameson, A., “Aerodynamic Design via Control Theory,” Journal of Scientific Computing, Vol. 3, 1988, pp. 233–260,
Also ICASE report 88–64.

2Baysal, O. and Eleshaky, M. E., “Aerodynamic Sensitivity Analysis Methods for the Compressible Euler Equations,”
Journal of Fluids Engineering, Vol. 113, No. 4, 1991, pp. 681–688.

3Reuther, J. J., Aerodynamic Shape Optimization Using Control Theory, Ph.D. thesis, University of California Davis,
1996.

4Anderson, W. K. and Venkatakrishnan, V., “Aerodynamic Design Optimization on Unstructured Grids with a Continuous
Adjoint Formulation,” Computers & Fluids, Vol. 28, 1999, pp. 443–480.

5Giles, M. B. and Pierce, N. A., “An Introduction to the Adjoint Approach to Design,” Flow, Turbulence and Combustion,
Vol. 65, No. 3/4, 2000, pp. 393–415.

6Pierce, N. A. and Giles, M. B., “Adjoint Recovery of Superconvergent Functionals from PDE Approximations,” SIAM
Review , Vol. 42, No. 2, 2000, pp. 247–264.

7Venditti, D. A. and Darmofal, D. L., “Anisotropic Grid Adaptation for Functional Outputs: Application to Two-
Dimensional Viscous Flow,” Journal of Computational Physics, Vol. 187, 2003, pp. 22–46.

8Barth, T. J., “Numerical Methods and Error Estimation for Conservation Laws on Structured and Unstructured Meshes,”
Lecture notes, von Karman Institute for Fluid Dynamics, Series: 2003-04, Brussels, Belgium, March 2003.

9Park, M. A., “Adjoint-Based, Three Dimensional Error Prediction and Grid Adaptation,” AIAA Journal , Vol. 42, No. 9,
2004, pp. 1854–1862.

10Pierce, N. A. and Giles, M. B., “Adjoint and defect error bounding and correction for functional estimates,” Journal of
Computational Physics, Vol. 200, 2004, pp. 769–794.

11Korivi, V. M., Taylor III, A. C., Newman, P. A., Hou, G. W., and Jones, H. E., “An Approximately Factored Incremental
Strategy for Calculating Consistent Discrete Aerodynamic Sensitivity Derivatives,” Journal of Computational Physics, Vol. 113,
No. 2, 1994, pp. 336–346.

12Elliott, J. and Herling, W., “A Chimera Approach to Aerodynamic Shape Optimization for the Compressible, High-Re
Navier Stokes Equations,” AIAA Paper 2000–4729, Long Beach, CA, Sept. 2000.

13Kim, C. S., Kim, C., and Rho, O. H., “Sensitivity Analysis for the Navier–Stokes Equations with Two-Equation Turbu-
lence Models,” AIAA Journal , Vol. 39, No. 5, 2001, pp. 838–845.

14Nemec, M. and Zingg, D. W., “Newton–Krylov Algorithm for Aerodynamic Design Using the Navier–Stokes Equations,”
AIAA Journal , Vol. 40, No. 6, 2002, pp. 1146–1154.

15Giles, M. B., Duta, M. C., Müller, J.-D., and Pierce, N. A., “Algorithm Developments for Discrete Adjoint Methods,”
AIAA Journal , Vol. 41, No. 2, 2003, pp. 198–204.

16Nielsen, E. J., Lu, J., Park, M. A., and Darmofal, D. L., “An Implicit, Exact Dual Adjoint Solution Method for Turbulent
Flows on Unstructured Grids,” Computers & Fluids, Vol. 33, 2004, pp. 1131–1155.

17Mavriplis, D. J., “Formulation and Multigrid Solution of the Discrete Adjoint Problem on Unstructured Meshes,” ICCFD
3 , July 2004.

18Barth, T. J., “Parallel CFD Algorithms on Unstructured Meshes,” Special Course on Parallel Computing in CFD ,
AGARD-R-807, Oct. 1995, pp. 7–1–7–41.

19Anderson, W. K. and Bonhaus, D. L., “Airfoil Design on Unstructured Grids for Turbulent Flows,” AIAA Journal ,
Vol. 37, No. 2, 1999, pp. 185–191.

20Elliott, J. K., Aerodynamic Optimization Based on the Euler and Navier–Stokes Equations Using Unstructured Grids,
Ph.D. thesis, Massachusetts Institute of Technology, 1998.

21Giering, R. and Kaminski, T., “Recipes for Adjoint Code Construction,” ACM Transactions on Mathematical Software,
Vol. 24, No. 4, 1998, pp. 437–474.

22Mohammadi, B. and Pironneau, O., Applied Shape Optimization for Fluids, Oxford University Press, New York, USA,
2001.

23Taylor III, A. C., Green, L. L., Newman, P. A., and Putko, M. M., “Some Advanced Concepts in Discrete Aerodynamic
Sensitivity Analysis,” AIAA Journal , Vol. 41, No. 7, 2003, pp. 1224–1229.

24Cusdin, P. and Müller, J.-D., “Deriving Linear and Adjoint Codes for CFD using Automatic Differentiation,” Preprint
submitted to AIAA J., www.ea.qub.ac.uk/jmueller/.

14 of 15

American Institute of Aeronautics and Astronautics Paper 2005–0877

May 2005 NAS Technical Report NAS-05-008

25Cusdin, P. and Müller, J.-D., “Generating Efficient Code with Automatic Differentiation,” 4th European Congress on
Computational Methods in Applied Sciences and Engineering (ECCOMAS), edited by P. Neittaanmäki, T. Rossi, K. Majava,
and O. Pironneau, July 2004.

26Aftosmis, M. J., “Solution Adaptive Cartesian Grid Methods for Aerodynamic Flows with Complex Geometries,” Lecture
notes, von Karman Institute for Fluid Dynamics, Series: 1997-02, Brussels, Belgium, March 1997.

27Aftosmis, M. J., Berger, M. J., and Melton, J. E., “Robust and Efficient Cartesian Mesh Generation for Component-Based
Geometry,” AIAA Journal , Vol. 36, No. 6, 1998, pp. 952–960.

28Aftosmis, M. J., Berger, M. J., and Adomavicius, G., “A Parallel Multilevel Method for Adaptively Refined Cartesian
Grids with Embedded Boundaries,” AIAA Paper 2000–0808, Reno, NV, Jan. 2000.

29Nemec, M., Aftosmis, M. J., and Pulliam, T. H., “CAD-Based Aerodynamic Design of Complex Configurations Using a
Cartesian Method,” AIAA Paper 2004–0113, Reno, NV, Jan. 2004.

30Aftosmis, M. J. and Berger, M. J., “Multilevel Error Estimation and Adaptive h-Refinement for Cartesian Meshes with
Embedded Boundaries,” AIAA Paper 2002–0863, Reno, NV, Jan. 2002.

31Melvin, R. G., Huffman, W. P., Young, D. P., Johnson, F. T., Hilmes, C. L., and Bieterman, M. B., “Recent Progress in
Aerodynamic Design Optimization,” International Journal for Numerical Methods in Fluids, Vol. 30, 1999, pp. 205–216.

32Young, D. P., Melvin, R. G., Bieterman, M. B., Johnson, F. T., and Samant, S. S., “A Locally Refined Rectangular Grid
Finite Element Method: Application to Computational Fluid Dynamics and Computational Physics,” Journal of Computational
Physics, Vol. 92, No. 1, 1991, pp. 1–66.

33Dadone, A. and Grossman, B., “Efficient Fluid Dynamic Design Optimization Using Cartesian Grids,” AIAA Paper
2003–3959, Orlando, FL, June 2003.

34Dadone, A. and Grossman, B., “Ghost-Cell Method for Inviscid Two-Dimensional Flows on Cartesian Grids,” AIAA
Journal , Vol. 42, No. 12, 2004, pp. 2499–2507.

35van Leer, B., “Flux-Vector Splitting for the Euler Equations,” ICASE Report 82-30, Sept. 1982.
36Aftosmis, M. J., Berger, M. J., and Murman, S. M., “Applications of Space-Filling-Curves to Cartesian Methods for

CFD,” AIAA Paper 2004–1232, Reno, NV, Jan. 2004.
37Berger, M. J., Aftosmis, M. J., and Murman, S. M., “Analysis of Slope Limiters on Irregular Grids,” AIAA Paper

2005–0490, Reno, NV, Jan. 2005.
38Giles, M. B. and Pierce, N. A., “Analytic Adjoint Solutions for the Quasi-One-Dimensional Euler Equations,” Journal

of Fluid Mechanics, Vol. 426, 2001, pp. 327–345.
39Nielsen, E. J., Anderson, W. K., Walters, R. W., and Keyes, D. E., “Application of Newton–Krylov Methodology to a

Three-Dimensional Unstructured Euler Code,” AIAA Paper 95–1733-CP, 1995.
40Nemec, M., Optimal Shape Design of Aerodynamic Configurations: A Newton–Krylov Approach, Ph.D. thesis, University

of Toronto, 2003, http://oddjob.utias.utoronto.ca/marian/.
41Burgreen, G. W., Three-Dimensional Aerodynamic Shape Optimization Using Discrete Sensitivity Analysis, Ph.D. thesis,

Old Dominion University, 1994.
42Giles, M. B., “On the Use of Runge–Kutta Time-Marching and Multigrid for the Solution of Steady Adjoint equations,”

Oxford University Computing Laboratory 00/10, June 2000.
43Carr, M. P. and Pallister, K. C., “Pressure Distributions Measured on Research Wing M100 Mounted on an Axisymmetric

Body,” Experimental Data Base for Computer Program Assessment , AGARD-R-138 B8, May 1979.
44Brown, J., Yates, L., Bogdanoff, D., Chapman, G., Loomis, M., and Tam, T., “Free Flight Testing in Support of the

Mars Smart Lander Aerodynamics Database,” AIAA Paper 2002–4410 (Rev. JSR), 2002.

15 of 15

American Institute of Aeronautics and Astronautics Paper 2005–0877

